Rotavirus is released from the apical surface of cultured human intestinal cells through nonconventional vesicular transport that bypasses the Golgi apparatus.

نویسندگان

  • N Jourdan
  • M Maurice
  • D Delautier
  • A M Quero
  • A L Servin
  • G Trugnan
چکیده

Rotaviruses are nonenveloped viruses that infect enterocytes of the small intestine and cause severe infantile gastroenteritis. It was previously thought that rotavirus exits cells by lysis, but this behavior does not match the local pathogenesis of the virus. In this study, we have investigated the release of the simian rotavirus strain (RRV) from the polarized intestinal Caco-2 cells. We found that RRV is released almost exclusively from the apical pole of Caco-2 cells before any cells lyse. Using confocal laser scanning microscopy and drugs that inhibit vesicular transport, we studied the RRV transport route from the endoplasmic reticulum (ER) to the apical side of intestinal cells. We demonstrated that RRV exits from the ER through a carbonyl cyanide m-chlorophenylhydrazone-sensitive vesicular transport. RRV staining was never found within the Golgi apparatus or lysosomes, suggesting that the RRV intracellular pathway does not involve these organelles. This finding was confirmed by treatment with monensin or NH4Cl, which do not affect release of RRV. Electron microscopic analysis revealed RRV containing small smooth vesicles in the apical area and free virions outside the cell in the brush border, consistent with a vesicular vectorial transport of virus. These results may provide, for the first time, a cellular explanation of the pathogenesis of rotavirus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane

The sorting of apical and basolateral proteins into vesicular carriers takes place in the trans-Golgi network (TGN) in MDCK cells. We have previously analyzed the protein composition of immunoisolated apical and basolateral transport vesicles and have now identified a component that is highly enriched in apical vesicles. Isolation of the encoding cDNA revealed that this protein, annexin XIIIb, ...

متن کامل

Microtubule-acting drugs lead to the nonpolarized delivery of the influenza hemagglutinin to the cell surface of polarized Madin-Darby canine kidney cells

The synchronized directed transfer of the envelope glycoproteins of the influenza and vesicular stomatitis viruses from the Golgi apparatus to the apical and basolateral surfaces, respectively, of polarized Madin-Darby canine kidney (MDCK) cells can be achieved using temperature-sensitive mutant viruses and appropriate temperature shift protocols (Rindler, M. J., I. E. Ivanov, H. Plesken, and D...

متن کامل

Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells

Madin-Darby canine kidney (MDCK) cells can sustain double infection with pairs of viruses of opposite budding polarity (simian virus 5 [SV5] and vesicular stomatitis virus [VSV] or influenza and VSV), and we observed that in such cells the envelope glycoproteins of the two viruses are synthesized simultaneously and assembled into virions at their characteristic sites. Influenza and SV5 budded e...

متن کامل

Receptor-Mediated Transcytosis of Leptin through Human Intestinal Cells In Vitro

Gastric Leptin is absorbed by duodenal enterocytes and released on the basolateral side towards the bloodstream. We investigated in vitro some of the mechanisms of this transport. Caco-2/15 cells internalize leptin from the apical medium and release it through transcytosis in the basal medium in a time- temperature-dependent and saturable fashion. Leptin receptors are revealed on the apical bru...

متن کامل

Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide.

In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIalpha from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and 5'NT, to newly formed apical surfaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 71 11  شماره 

صفحات  -

تاریخ انتشار 1997